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Abstract. The natural quasi-concavity of set-valued mappings in an ordered vector space is
introduced. Existence theorems for vector equilibrium problems involving set-valued mono-
tone mappings are obtained and the convexity of the solution set is shown.
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1. Introduction

Let X be a real topological vector space, D C X a nonempty subset, and
let f: D x D — R be a given real function with f{x,x) =0 for all x € D.
The equilibrium problem consists in finding

x € D such that f(x,y) >0 for all y € D.

This problem contains as special cases for instance, optimization problems,
problems of Nash equilibria, fixed point problems, variational inequalities
and complementarity problems (see [4, 7]). Recently, equilibrium problems
involving vector mappings in ordered vector spaces are considered by many
authors (see [1, 3, 6, 7, 10, 11], and references therein).

Let Y be a real topological vector space, C C Y a closed, pointed and
convex cone with apex at the origin and with nonempty interior, int C # ().
Let G,H : D x D — 27 be set-valued mappings. We consider the following
Vector Equilibrium Problems (in short, VEP):

(VEP 1) Find x € D such that G(x,y) + H(x,y) C Y\(—intC), Vy € D;

(VEP 2) Find x € D such that [G(x,y)+ H(x,y)](Y\(—=intC)) # 0,

Vy € D;
(VEP 3) Find x € D such that G(x,y) + H(x,y) C Y\(—=C\ {0}), Vy €
D.
Obviously, any solution of (VEP 1) is also a solution of (VEP 2). If G and
H are single-valued mappings, then problems (VEP 1) and (VEP 2) both
collapse to the following VEP:
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(VEP 4) Find x € D such that G(x,y) + H(x,y)¢—int C, Yy € D;
The (VEP 3) becomes (VEP 5):

(VEP 5) Find x € D such that G(x,y) + H(x,y)é—C\{0}, Vy € D.
The (VEP 4) and (VEP 5) have been studied by Tan and Tinh [11]. Their
existence results extend some main results of Blum and Oettle ([4, theorem
1 and theorem 1A]) to vector mappings. Tan and Tinh have also given
some applications to efficient points, Nash equilibrium and variational
inequalities.

The purpose of the paper is to discuss existence results of (VEP 1) and
(VEP 3) and the convexity of the solution set. Our existence theorems
extend main results of [4, 11] to vector set-valued mappings.

2. Preliminaries

Let Y be real locally convex Hausdorff space, and C C Y a pointed, closed
convex cone with apex at the origin and with int C # (). We say that the
cone C satisfies the condition B N
(A) if there is a pointed, closed convex cone C such that C\ {0} C int C.

It is well-known that if C has a base , then C satisfies the condition (A)
(see [7], p- 234).The cone

C'={fe Y :f{x)=20,Vx € C}
is called the dual cone of C, where Y* is the topological dual of Y. C* is a
convex cone. The set

C'={fe Y :flx)>0Vxe C\{0}}
is called the quasi-interior of C*. If C* # 0, then C*U {0} is a nontrivial
convex cone. It is well-known that C* # () if and only if C has a base (see

[8D).

DEFINITION 1 ([5]). Let X and Y be topological spaces, T: X — 2Y a
set-valued mapping.

(1) T is said to be upper semi-continuous (in short, u.s.c.) at x € X if,
for each open set V' C T(x), there is a neighbourhood U of x such
that for each z € U, T(z) C V; T is said to be u.s.c. on X if it is
u.s.c. at all x € X.

(i) T is said to be lower semi-continuous (in short, l.s.c.) at x € X if,
for each open set ¥ with T(x) NV # (), there is a neighbourhood U
of x such that for each z € U, T(z) N V # (. T is said to be l.s.c. on
Xifitis lLs.c. at all x € X.

(i) 7 is said to be closed if the graph G,(T) of T, G,(T) = {(x,y):
xe€X, ye T(x)},is closed in X x Y.

By the definition, it is easy to show the following lemma.
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LEMMA 1([6]). Let X, Y and T be as in Definition 1. Then
(i) T is closed if and only if for any net {x,} in X, x, — x and any net
{Va}s yu € T(xy), ¥y — y, one has y € T(x).
(i) T is Ls.c. at x € X if and only if for any y € T(x) and any net
{xy},xy — X, there is a net {y,} such that y, € T(xy),ys — .
(i) If Y is compact, then T is u.s.c. if and only if T is closed.

DEFINITION 2([9]). Let X and Y be real locally convex spaces, C C Y a
closed convex cone with apex at the origin, and D C X a nonempty subset.
Let T:D — 2Y be a set-valued mapping. T is said to be lower semi-con-
tinuous with respect to C at x € D ( in short, C-l.s.c. ) if for any y € T(x)
and each neighbourhood V' of y, there is a neighbourhood U of x such that
foreach ze UND, T(z)N(V+ C) # 0. T is said to be C-ls.c. on D if it is
C-ls.c. at all x € D.

REMARK 1. (i) If T'is l.s.c. at x € D, then it is C-l.s.c. at x € D; (i) If T
is single-valued and (-C)-l.s.c. at x € D, then it is C-u.s.c. at x € D in the
sense of Tan and Tinh ([11, Definition 2.6]).

LEMMA 2. Let D, Y and C be as in Definition 2, and T : D — 2Y be C-
l.s.c. on D. Then the set A ={x € D : T(x) C Y\int C} is closed in D.

Proof. We can suppose that int C # (). Let x € D and a net {x,} in 4 such
that x, — x. We need to show x € A. If x¢ A4, then T(x) ¢ Y\int C.
Hence, there is a point y € T(x) such that y € int C. Since int C is a neigh-
bourhood of y and T is C-Ls.c., there is a neighbourhood U of x such that
Vze UND,

Tz)N(int C+C)=T(z)Nint C# D (1)
Since x, — x, there is a f§ such that Va>=f5, x, € UN D. Therefore, by (1),
T(xy) Nint C # 0, i.e., x, & 4, a contradiction. O

LEMMA 3. Let D,Y and C be as in Lemma 2, and let T : D — 2 be
given. For any fixed x, y € D, let g(t) = T(ty + (1 — t)x), t € [0, 1]. Assume
that g(t) is (-C)-Ls.c. at t=0, and Yt e (0,1],g(t) C Y\(—int C). Then
g(0) C Y\(—int C).

Proof. If the conclusion is false, then there is a point w € g(0) such that
w € —int C. Since g(¢) is (-C)-l.s.c. at t =0, there is a é € (0,1) such that
Vi€ [0,9], g(t)yn(—int C— C) = g(r) N (—int C) # (. This contradicts the
assumption g(¢) C Y\(—int C). ]

DEFINITION 3([4]). Let K and D be nonempty convex subsets of a vec-
tor space X with K C D. The set
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corepK={a€K: Kn(ay #0, Vye D\K}
is called the core of K relative to D, where (a,y]={x€X:x=
(1 o t)a +iy,te (07 1]}
Motivated by Tanaka [12], we introduce the following concept of natural
quasi-C-concavity for set-valued mappings.

DEFINITION 4. Let X and Y be real topological vector spaces, D C X a
convex subset, and CC Y a convex cone. Let F:D—2Y and
G :D x D — 2Y be given.
(i) F is said to be C-convex if for any x,y€ D, t€|0,1], tF(x)+
(1-0)F(y) C Fitx+ (1 —t)y) + G;
(i) F is said to be C-concave if for any x,ye€ D, t€[0,1], F(tx+
(1—=1)y) CtF(x)+ (1 —0)F(y) + C.
(iii) F is said to be natural quasi-C-concave if for any x, y € D,
te0,1], z=tx+(1—1)y, we F(z), there exist pe[0,1] and
wy € F(x), wyp € F(y) such that w € uw; + (1 — p)wa + C.
(iv) G is said to be monotone if for any x, ye€D, G(x,y)+
G(y,x) Cc —C.

REMARK 2. Obviously, if F is C-concave, then it is natural quasi-C-con-
cave.

DEFINITION 5([5]). Let D be a nonempty convex subset of a vector
space X. A set-valued mapping F : D — 2% is called KKM-mapping if for
each finite subset {xi,...,x,} C D, co(xy,...,x,) C U, F(x;), where
co(E) is the convex hull of a set E.

FAN LEMMA ([5]). Let X be a Hausdorff topological vector space, and let
D be a nonempty, convex subset of X. Let F : D — 2% be a KKM-mapping. If
all the sets F(x) are closed in X, and if one is compact, then (.., F(x) # 0.

3. Existence of solutions of VEP

In this section, using the methods of [4, 11], we prove existence theorems
for VEP. Throughout this section, let X and Y be real locally convex
Hausdorff spaces, D a nonempty,convex closed subset of X, and CC Y a
pointed, closed convex cone with apex at the origin and int C # ().

LEMMA 4. Let G, H:D x D — 2Y be set-valued mappings satisfing the
following conditions:
(i) Vxe D, 0¢€ G(x,x) C C,0€ H(x,x) C C;
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(1) G is monotone;
(i) for any fixed x, y € D, the mapping g(t) = G(ty+ (1 —1)x,y),
0<r<l,is (-O)-ls.c. at t =0;
(iv) for any fixed x € D, G(x,.), H(x,.) : D — 2Y are C-convex.
Then the following statements are equivalent:
(I) xe D, G(y,x) — H(x,y) C Y\int C, ¥y € D;
(II) x € D, G(x,y) + H(x,y) C Y\(—int C), ¥y € D.

Proof. (I) = (II). For any fixed y € D, Vt € (0,1}, x, =ty + (1 — )X € D,
by (I), we have

G(x;,x) — H(x,x,) C Y\int C. (2)
By the condition (i) and the C-convexity of G(x,.) and H(x,.), we have

tG(x1,y) + (1 = )G(x4,X) C G(x,x;) +CC C+ C=C, (3)

tH(x,y) C tH(x,y)+ (1 —t)H(x,x) C H(x,x;) + C. (4)

By (3) and (4), we get
1G(x,y)+t(1 = )H(X,y) C —(1 —1)G(x,,X) + (1 — )H(x,x;) + C.

(5)
We claim that
G(x,y)+ (1 —t)H(x,y) C Y\(—int C), Vre (0,1]. (6)
Indeed, if (6) is false, then there exist some 7€ (0,1] and some
a € G(x;,y), b € H(x,y) such that
a+(1—1)be —int C. (7)
By (5), there exist ze€ G(x,x), we H(X,x;,) and ¢€ C such that
tla+ (1 = 0)b] = —(1 —t)(z—w) + ¢ By (7), we have
(1—1t)(z—w)=—tla+ (1 —t)b]+c€int C+ ¢ Cint C.
Hence, z — w € int C, which contradicts (2).
Let g(t) = G(x,,y) + (1 —t)H(X,p), t € [0,1]. By the condition (iii), g(¢)
is (-C)-Ls.c. at t = 0. It follows from Lemma 3 that g(0) C Y\(—int C), i.e.,
G(x,y)+ H(x,y) C Y\(=int C), Vye D.
(I) = (I). In contrary, assume that (I) is false. Then 3y € D such that
G(y,x)— H(x,y) ¢ Y\intC.
Therefore, there exist z € G(y, X) and w € H(X, y) such that

z—weint C. (8)
On the other hand, since G is monotone, we have
G, ) C —C— G(%, 7). 9)

By (9) and (II), we have

z—weG(y,x)— H(x,y) C —C—G(x,y) — H(x,y) C —C— (Y\(—int C)).
Hence, there exist ¢ € C and

y € Y\(—int C) (10)
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such that z — w = —c — y. By (8), we have
—y=c+(z—w)€c+intCCint C, ,ie., y€ —int C,
which contradicts (10). Thus (I) holds. O

THEOREM 1. Let G and H be as in Lemma 4, and let all the conditions (1)—
(iv) of Lemma 4 hold. In addition, G and H satisfy the following conditions:
(v) for any fixed x € D, G(x,y) is C-Ls.c. in y; for any fixed y € D,
H(x,y) is (-C)-Ls.c. in x;

(vi) there is a nonempty, convex compact subset K C D such that,
Vx € K\corepK,3a € corepK, G(x,a) + H(x,a) ¢ Y\(—C).
Then 3x € K such that
G(x,y) + H(x,y) C Y\(—int C), Vy€ D;
In addition, if C satisfies the condition (A), then
G(x,y) + H(x,y) C Y\(=C\{0}), VyeD.
First, we prove the following lemmas.

LEMMA 5. Let all the conditions in Theorem 1 hold. Then there is an
X € K such that
G(y,x)—H(x,y) C Y\int C, VyeKk.

Proof. Define F:K — 2K by
F(y)={xeK: G(y,x)— H(x,y) C Y\int C}, VyeKk.
For any fixed y € D, since G(y,.) — H(.,y) is C-l.s.c.,, by Lemma 2, F(y) is
closed in K. We shall show that F is a KKM-mapping.
Suppose it is false. Then there exist {y;,...,y,} C K and ¢,...,1, > 0,
Sy ti=1and z=Y ., t;y; such that z & J_, F(»;). Then, for each i,
G(yi,z) — H(z,y:) ¢ Y\int C, 1ie., 3a; € G(yi,z), b; € H(z,y;) such that
a; — b; € int C. Thus,
> ti{a; — b)) € int C. (11)
i1

On the other hand, since G is monotone, we have
G(y,',Z) c-C- G(Zvyl')a Vi.

Since G(x,y) is C-convex in y, it follows from the above that

> 14G(y,z) © —C = 1iG(z,y) C —C—G(z,2) = C = —C. (12)
i=1 i=1

Since H(x,y) is C-convex in y, we get

> 4H(z,y) CH(z,z)+ CC C+C=C. (13)

i=1
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By (12) and (13), we have

By (11) and (14), we have

Z tia; — Z tib; € (—C) N (il’lt C) = @,
i=1 i=1

a contradiction. Hence, F is a KKM- mapping Since K is compact, by the
well-known Fan lemma, there ex1sts x € MNyex
G(y,X) Y{ml C Vy 6 K.

O

LEMMA 6. Let D, K and C be as in Theorem 1, and let \ : D — 2 be
given. Assume that
(1) ¥ is C-convex;
(ii) xo € corepK, Y(xo) ¢ Y\(—C);
(i) Vy € K, ¥(y) C Y\(—int C).

Then y(y) C Y\(—int C), Vy € D.

Proof. Suppose that there is a point y € D\K such that y(y) ¢ Y\(—int C).
Then there is w € Y(¥) such that w € —int C. By condition (ii), we have
u€ Y(xo) such that we —C. For each z € (xo,y], z=1txo+ (1 —1)y,
€ [0,1), it follows from the C-convexity of y that

tu+ (1 —=tweth(x)+ (1 —-0)y(y) Cy(z)+C
Therefore, there exist v € Y(z) and ¢ € C such that ru+ (1 —f)w=v+c.
Thus, we have

v=—c+tu+(1—t)we —c—C—int C C —int C.
Hence,

V(=) & Y\(—int O). (15)
Since x( € corepK, we have a point z € (xg, y] N K. By (15), we get

Y(2) ¢ Y\(=int C),

which contradicts condition (iii). O

Proof of Theorem 1. By Lemma 5, 3x € K such that

G(y,x)—H(x,y) C Y\int C, VyeKk.
It follows from Lemma 4 that

G(xX,y)+ H(x,y) C Y\(—int C),Vy € K. (16)
Let y(y) = G(x,y)+ H(X,y), Yy € D. Then ¢ is C-convex. By (16), we

e
Y(y) C Y\(~int C), VyeK.
If x € corepK, then choose xy = x; if x € K\corepK, by condition (vi) of
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Theorem 1, choose xo =a. We have x € corepK and y(xy) ¢ Y\(—C).
Lemma 6 yields y(y) C Y\(—int C),Vy € D, i.e.,

G(x,y)+ H(x,y) C Y\(—=int C), Vye€D.
In addition, if C satisfies the condition (A), then there is a pointed, closed
convex cone C of Y such that C\{0} C int C. Then D,K,C,G and H satisfy
all the conditions of this theorem. Applying the proof of the first part for
D,K,C,G and H, we conclude that there is X € K such that

G(%,y) + H(¥,y) C Y\(~int C), Vy € D.
Since C\{0} C intC, it follows
G(f,y) + H(f,y) C Y\(_C\{O})7 Vy e€D. [l

REMARK 3. (i) If D is a compact convex subset, then the condition (vi)
is satisfied vacuously with K = D, since then K\corepK = (). (ii) If G, H are
vector single-valued mappings, then we get Theorem 3.1 of [11]. If G, H
are scalar single-valued functions, then we get Theorem 1 of [4].

Let L(X, Y) be the space of all continuous linear operators from X into
Y. For any /€ L(X,Y), (/,x) denotes the evaluation of / at x € X. Let
T:D — 2M%Y) be given, and (T(x),y) = Uier (4 2)-

DEFINITION 6. Let T be as above. T is said to be monotone if,
VX,)/ € Da <T(X),X—y> + <T(y)7 y_x> c —C.

COROLLARY. Let T:D — 2tV pe a  set-valued mapping and
h:D — Y be a single-valued mapping satisfying the following conditions:

(1) T is monotone;
(i) for any fixed x,y € D, g(t) = (T(ty+ (1 —t)x), x —y), 0<t<1, is
(-O)-l.s.c. at t =0;
(iii) 4 is C-convex and continuous;
(iv) there is a nonempty, compact convex subset K of D such that,
Vx € K\corepK, Ja € corepKk,
(T(x), x —a) + h(a) = h(x) £ Y\(=C).
Then there is x € K such that
(T(x), X—y)+h(y)—h(x)C Y\(—int C), VyeD.
Proof. In Theorem 1, choose G(x,y)=(T(x), x—y) and H(x,y)=
h(y) — h(x). Then Theorem 1 yields the conclusion. ]

THEOREM 2. Let D, C, G and H be as in Theorem 1, and let the condi-
tions (1)—(v) of Theorem 1 hold. In addition, assume that the following condi-
tion holds:
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(vi)’ there exists a nonempty, compact convex subset B C D such that,
Vx € D\B, Ja € B,
G(a,x) — H(x,a) ¢ Y\int C. (17)
Then there exists X € B such that
G(x,y)+ H(x,y) C Y\(—int C), Vye D.
If C satisfies the condition (A), then
G(x,y) + H(x,y) C Y\(=C\{0}), VyeD.

Proof. For any y € D, put
F(y) ={x€ B:G(y,x) — H(x,y) C Y\int C}.

Then F has the finite intersection property. In fact, let {y,...,y,} C D,

and let K=co(BU{yi,...,y,}). Then K is a compact convex subset of D.

Applying the argument of Lemma 35, there is X € K such that
G(y,X)—H(X,y) C Y\int C, VyeKk. (18)

If ¥ € K\B, then by the condition (vi)’, Ja € B such that

G(a,X)— H(X,a) ¢ Y\int C,
a contradiction to (18). We conclude x € B. Hence, X € (.., F(»), i.e.,
F(y) has the finite intersection property. Since B is compact, we have
x€)..nF(y). Thus, x € B and

%(6)2 )E)(J2 H(x,y) C Y\int C, Vy e D.
By Lemma 4, it follows that

G(x,y)+ H(x,y) C Y\(—int C), Vye D.
The second part can be proven similarly to the second part of Theorem 1.

O

REMARK 4. (i) From the proof of Theorem 2, we have the following fact:
if x is a solution of (VEP 1) or (VEP 3) in Theorem 2, then X € B. Indeed,
let x is a solution of (VEP 1). By Lemma 4, x also satisfies

(xx) G(y,x)— H(x,y) C Y\int C, VYyeD.
If X € D\B, then by condition (vi)’ of Theorem 2, 3a € B such that

G(a,x) — H(x,a) ¢ Y\int C,
which contradicts (**). Hence, X € B. For (VEP 3), the argument is similar.

(ii) If G and H are vector single-valued mappings, from the above Theo-

rem 2, we obtain Theorem 3.7 of [11].If G, H are scalar single-valued func-
tions, we get Theorem 1A of [4].We drop the maximal monotonicity of G.

4. Convexity of solution sets of VEP

THEOREM 3. Let X, Y, D and C be as in Theorem 1, and let C* # (). Let
G, H:D x D — 2Y be set-valued mappings satisfying the conditions (i)—(vi)
in Theorem 1. In addition, assume that G, H satisfy the following condition:
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(vii) for any fixed y € D, G(.,y)+ H(.,y) : D — 2Y are natural quasi-C-
concave;

Then the solution set of (VEP 1)
E={xe K:G(x,y)+ H(x,y) C Y\(—int C),Vy € D}
is convex. If C satisfies the condition (A), then the solution set of (VEP 3)
E,={x€ K:G(x,y)+ H(x,y) C Y\(-C\{0}), Vye D}

s convex.

Proof. We only show the case of (VEP 1). The other one can be proven
similarly. By Theorem 1, E#(. VYfeC, let T(f)={xecK:
AG(x,y) + H(x,y)] >0, Vy € D}, then E =\ T(f), where f[G(xX,y)+
H(x,y)] >0 means that Vz € G(x,y), w € H(x,y), f(z+w)>0.

Indeed, let xe€ E. Then G(x,y)+ H(x,y) C Y\(—int C), Vy € D. If
feCt, for any z € G(x,y), we H(X,y), z+wé—int C and f(z +w)>0.
Hence, Vf ¢ C* X & T(f). Then, E C (e T(f).

On the other hand, if X € (. T(f), then Vf€ C* such that x € T(f),
that is,

AG(x,y) + H(x,»y)) =0, VyeD. (19)
We claim that x € E, that is,

G(x,y)+ H(x,y) C Y\(—int C), VyeD.
Suppose to the contrary that there is a y € D such that

G(¥,7) + H(% ) ¢ Y\(~int O).
Then there are z € G(X,y), w € H(X,y) such that z+w € —int C. Since
fe 4, it follows f(z + w) < 0, which contradicts (19). Hence, X € E.

Next, we show that Vf € C*, T(f) is a nonempty,convex subset of K.

Let € C* be given. Let x1, xo € T(f), and X = tx; + (1 — £)xp, 0<¢<1.
Then we have

f(G(X,'7y)+H(X,',y))>O, VyED, 12172 (20)
For any fixed y € D, by condition (vii), Vz € G(x,y) + H(X,y), there are
z; € G(x;,¥) + H(x;,p), i = 1,2, u € [0, 1] such that

zeuzi + (1 —pz + C.

Then, there is some ¢ € C such that

z=uz1 + (1 — )z + ¢ (21)
By (20) and (21), we have f{z) >0. Since z is arbitrary, we get X € T(f), i.e.,
T(f) is convex. Since E = (", T(f), E is convex. O

Using a similar proof, we have the following result.

THEOREM 4. Let X, Y, D and C be the same as in Theorem 3. Let G,
H : D x D — 2% satisfy all the conditions in Theorem 2. In addition, assume
that the following condition holds:

(vi) for any fixed y € D, G(.,y)+ H(.,y) : D — 2V is natural quasi-C-con-
cave.
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Then the solution set of (VEP 1)
E={x€eB:G(x,y)+ H(x,y) C Y\(—int C), Vye D}
is convex. If C satisfies condition (A), then the solution set of (VEP 3)
E.={x€B:G(x,y)+ H(x,y) C Y\(-C\{0}), Vye D}

is convex.
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