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Abstract. The natural quasi-concavity of set-valued mappings in an ordered vector space is
introduced. Existence theorems for vector equilibrium problems involving set-valued mono-
tone mappings are obtained and the convexity of the solution set is shown.
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1. Introduction

Let X be a real topological vector space, D � X a nonempty subset, and
let f : D�D �! R be a given real function with fðx; xÞ ¼ 0 for all x 2 D.
The equilibrium problem consists in finding

x 2 D such that fðx; yÞP0 for all y 2 D:

This problem contains as special cases for instance, optimization problems,
problems of Nash equilibria, fixed point problems, variational inequalities
and complementarity problems (see [4, 7]). Recently, equilibrium problems
involving vector mappings in ordered vector spaces are considered by many
authors (see [1, 3, 6, 7, 10, 11], and references therein).
Let Y be a real topological vector space, C � Y a closed, pointed and

convex cone with apex at the origin and with nonempty interior, int C 6¼ ;.
Let G;H : D�D �! 2Y be set-valued mappings. We consider the following
Vector Equilibrium Problems (in short, VEP):
(VEP 1) Find x 2 D such that Gðx; yÞ þHðx; yÞ � Ynð�intCÞ, 8y 2 D;
(VEP 2) Find x 2 D such that ½Gðx; yÞ þHðx; yÞ�

T
ðYnð�intCÞÞ 6¼ ;,

8y 2 D;
(VEP 3) Find x 2 D such that Gðx; yÞ þHðx; yÞ � Ynð�C n f0gÞ, 8y 2

D.
Obviously, any solution of (VEP 1) is also a solution of (VEP 2). If G and
H are single-valued mappings, then problems (VEP 1) and (VEP 2) both
collapse to the following VEP:
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(VEP 4) Find x 2 D such that Gðx; yÞ þHðx; yÞ j2�int C, 8y 2 D;
The (VEP 3) becomes (VEP 5):
(VEP 5) Find x 2 D such that Gðx; yÞ þHðx; yÞ j2�Cnf0g, 8y 2 D.

The (VEP 4) and (VEP 5) have been studied by Tan and Tinh [11]. Their
existence results extend some main results of Blum and Oettle ([4, theorem
1 and theorem 1A]) to vector mappings. Tan and Tinh have also given
some applications to efficient points, Nash equilibrium and variational
inequalities.
The purpose of the paper is to discuss existence results of (VEP 1) and

(VEP 3) and the convexity of the solution set. Our existence theorems
extend main results of [4, 11] to vector set-valued mappings.

2. Preliminaries

Let Y be real locally convex Hausdorff space, and C � Y a pointed, closed
convex cone with apex at the origin and with int C 6¼ ;. We say that the
cone C satisfies the condition
(D) if there is a pointed, closed convex cone eC such that C n f0g � int eC.

It is well-known that if C has a base , then C satisfies the condition (D)
(see [7], p. 234).The cone

C� ¼ ff 2 Y� : fðxÞP0; 8x 2 Cg
is called the dual cone of C, where Y� is the topological dual of Y. C� is a
convex cone. The set

C] ¼ ff 2 Y� : fðxÞ > 0;8x 2 Cnf0gg
is called the quasi-interior of C�. If C] 6¼ ;, then C] [ f0g is a nontrivial
convex cone. It is well-known that C] 6¼ ; if and only if C has a base (see
[8]).

DEFINITION 1 ([5]). Let X and Y be topological spaces, T :X �! 2Y a
set-valued mapping.
ii(i) T is said to be upper semi-continuous (in short, u.s.c.) at x 2 X if,

for each open set V � TðxÞ, there is a neighbourhood U of x such
that for each z 2 U, TðzÞ � V; T is said to be u.s.c. on X if it is
u.s.c. at all x 2 X.

i(ii) T is said to be lower semi-continuous (in short, l.s.c.) at x 2 X if,
for each open set V with TðxÞ \ V 6¼ ;, there is a neighbourhood U
of x such that for each z 2 U, TðzÞ \ V 6¼ ;. T is said to be l.s.c. on
X if it is l.s.c. at all x 2 X.

(iii) T is said to be closed if the graph GrðTÞ of T, GrðTÞ ¼ fðx; yÞ :
x 2 X; y 2 TðxÞg, is closed in X� Y.

By the definition, it is easy to show the following lemma.
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LEMMA 1([6]). Let X, Y and T be as in Definition 1. Then
ii(i) T is closed if and only if for any net fxag in X, xa ! x and any net
fyag, ya 2 TðxaÞ, ya ! y, one has y 2 TðxÞ.

i(ii) T is l.s.c. at x 2 X if and only if for any y 2 TðxÞ and any net
fxag;xa ! x, there is a net fyag such that ya 2 TðxaÞ; ya ! y.

(iii) If Y is compact, then T is u.s.c. if and only if T is closed.

DEFINITION 2([9]). Let X and Y be real locally convex spaces, C � Y a
closed convex cone with apex at the origin, and D � X a nonempty subset.
Let T : D �! 2Y be a set-valued mapping. T is said to be lower semi-con-
tinuous with respect to C at x 2 D ( in short, C-l.s.c. ) if for any y 2 TðxÞ
and each neighbourhood V of y, there is a neighbourhood U of x such that
for each z 2 U \D, TðzÞ \ ðVþ CÞ 6¼ ;. T is said to be C-l.s.c. on D if it is
C-l.s.c. at all x 2 D.

REMARK 1. (i) If T is l.s.c. at x 2 D, then it is C-l.s.c. at x 2 D; (ii) If T
is single-valued and (-C)-l.s.c. at x 2 D, then it is C-u.s.c. at x 2 D in the
sense of Tan and Tinh ([11, Definition 2.6]).

LEMMA 2. Let D, Y and C be as in Definition 2, and T : D �! 2Y be C-
l.s.c. on D. Then the set A ¼ fx 2 D : TðxÞ � Ynint Cg is closed in D.

Proof. We can suppose that int C 6¼ ;. Let x 2 D and a net fxag in A such
that xa ! x. We need to show x 2 A. If x j2A, then TðxÞ 6� Ynint C.
Hence, there is a point y 2 TðxÞ such that y 2 int C. Since int C is a neigh-
bourhood of y and T is C-l.s.c., there is a neighbourhood U of x such that
8z 2 U \D,

TðzÞ \ ðint Cþ CÞ ¼ TðzÞ \ int C 6¼ ; ð1Þ
Since xa ! x, there is a b such that 8aPb, xa 2 U \D. Therefore, by (1),
TðxaÞ \ int C 6¼ ;, i.e., xa j2A, a contradiction. (

LEMMA 3. Let D,Y and C be as in Lemma 2, and let T : D �! 2Y be
given. For any fixed x; y 2 D, let gðtÞ ¼ Tðtyþ ð1� tÞxÞ, t 2 ½ 0; 1�. Assume
that gðtÞ is (-C)-l.s.c. at t ¼ 0, and 8t 2 ð 0; 1�; gðtÞ � Ynð�int CÞ. Then
gð0Þ � Ynð�int CÞ.

Proof. If the conclusion is false, then there is a point w 2 gð0Þ such that
w 2 �int C. Since gðtÞ is (-C)-l.s.c. at t ¼ 0, there is a d 2 ð0; 1Þ such that
8t 2 ½0; d�, gðtÞ \ ð�int C� CÞ ¼ gðtÞ \ ð�int CÞ 6¼ ;. This contradicts the
assumption gðtÞ � Ynð�int CÞ. (

DEFINITION 3([4]). Let K and D be nonempty convex subsets of a vec-
tor space X with K � D. The set
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coreDK ¼ fa 2 K : K \ ða; y� 6¼ ;; 8y 2 DnKg
is called the core of K relative to D, where ða; y� ¼ fx 2 X : x ¼
ð1� tÞaþ ty; t 2 ð0; 1�g.
Motivated by Tanaka [12], we introduce the following concept of natural

quasi-C-concavity for set-valued mappings.

DEFINITION 4. Let X and Y be real topological vector spaces, D � X a
convex subset, and C � Y a convex cone. Let F : D �! 2Y and
G : D�D �! 2Y be given.
ii(i) F is said to be C-convex if for any x; y 2 D, t 2 ½0; 1�, tFðxÞþ
ð1� tÞFðyÞ � Fðtxþ ð1� tÞyÞ þ C;

i(ii) F is said to be C-concave if for any x; y 2 D, t 2 ½0; 1�, Fðtxþ
ð1� tÞyÞ � tFðxÞ þ ð1� tÞFðyÞ þ C.

(iii) F is said to be natural quasi-C-concave if for any x; y 2 D,
t 2 ½0; 1�, z ¼ txþ ð1� tÞy, w 2 FðzÞ, there exist l 2 ½0; 1� and
w1 2 FðxÞ, w2 2 FðyÞ such that w 2 lw1 þ ð1� lÞw2 þ C.

(iv) G is said to be monotone if for any x, y 2 D, Gðx; yÞþ
Gðy;xÞ � �C.

REMARK 2. Obviously, if F is C-concave, then it is natural quasi-C-con-
cave.

DEFINITION 5([5]). Let D be a nonempty convex subset of a vector
space X. A set-valued mapping F : D �! 2X is called KKM-mapping if for
each finite subset fx1; . . . ; xng � D, coðx1; . . . ;xnÞ �

Sn
i¼1 FðxiÞ, where

co(E) is the convex hull of a set E.

FAN LEMMA ([5]). Let X be a Hausdorff topological vector space, and let
D be a nonempty, convex subset of X. Let F : D �! 2X be a KKM-mapping. If
all the sets FðxÞ are closed in X, and if one is compact, then

T
x2D FðxÞ 6¼ ;.

3. Existence of solutions of VEP

In this section, using the methods of [4, 11], we prove existence theorems
for VEP. Throughout this section, let X and Y be real locally convex
Hausdorff spaces, D a nonempty,convex closed subset of X, and C � Y a
pointed, closed convex cone with apex at the origin and int C 6¼ ;.

LEMMA 4. Let G; H : D�D �! 2Y be set-valued mappings satisfing the
following conditions:

(i) 8x 2 D, 0 2 Gðx;xÞ � C, 0 2 Hðx;xÞ � C;
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i(ii) G is monotone;
(iii) for any fixed x; y 2 D, the mapping gðtÞ ¼ Gðtyþ ð1� tÞx; yÞ;

0OtO1, is (-C)-l.s.c. at t ¼ 0;
(iv) for any fixed x 2 D, Gðx; :Þ;Hðx; :Þ : D �! 2Y are C-convex.

Then the following statements are equivalent:
(I) �x 2 D, Gðy; �xÞ �Hð�x; yÞ � Ynint C, 8y 2 D;
(II) �x 2 D, Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ, 8y 2 D.

Proof. (I) ¼) (II). For any fixed y 2 D, 8t 2 ð0; 1�, xt ¼ tyþ ð1� tÞ�x 2 D,
by (I), we have

Gðxt; �xÞ �Hð�x; xtÞ � Ynint C: ð2Þ
By the condition (i) and the C-convexity of Gðx; :Þ and Hðx; :Þ, we have

tGðxt; yÞ þ ð1� tÞGðxt; �xÞ � Gðxt; xtÞ þ C � Cþ C ¼ C; ð3Þ

tHð�x; yÞ � tHð�x; yÞ þ ð1� tÞHð�x; �xÞ � Hð�x;xtÞ þ C: ð4Þ
By (3) and (4), we get

tGðxt; yÞ þ tð1� tÞHð�x; yÞ � �ð1� tÞGðxt; �xÞ þ ð1� tÞHð�x; xtÞ þ C:

ð5Þ
We claim that

Gðxt; yÞ þ ð1� tÞHð�x; yÞ � Ynð�int CÞ; 8t 2 ð0; 1�: ð6Þ
Indeed, if (6) is false, then there exist some t 2 ð 0; 1� and some
a 2 Gðxt; yÞ; b 2 Hð�x; yÞ such that

aþ ð1� tÞb 2 �int C: ð7Þ
By (5), there exist z 2 Gðxt; �xÞ; w 2 Hð�x;xtÞ and �c 2 C such that
t½aþ ð1� tÞb� ¼ �ð1� tÞðz� wÞ þ �c. By (7), we have

ð1� tÞðz� wÞ ¼ �t½aþ ð1� tÞb� þ �c 2 int Cþ �c � int C:

Hence, z� w 2 int C, which contradicts (2).
Let gðtÞ ¼ Gðxt; yÞ þ ð1� tÞHð�x; yÞ; t 2 ½0; 1�. By the condition (iii), gðtÞ

is (-C)-l.s.c. at t ¼ 0. It follows from Lemma 3 that gð0Þ � Ynð�int CÞ, i.e.,
Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D:

(II) ¼) (I). In contrary, assume that (I) is false. Then 9�y 2 D such that

Gð�y; �xÞ �Hð�x; �yÞ 6� YnintC:
Therefore, there exist z 2 Gð�y; �xÞ and w 2 Hð�x; �yÞ such that

z� w 2 int C: ð8Þ
On the other hand, since G is monotone, we have

Gð�y; �xÞ � �C� Gð�x; �yÞ: ð9Þ
By (9) and (II), we have

z�w2Gð�y; �xÞ�Hð�x; �yÞ ��C�Gð�x; �yÞ�Hð�x; �yÞ ��C�ðYnð�int CÞÞ:
Hence, there exist c 2 C and

y 2 Ynð�int CÞ ð10Þ
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such that z� w ¼ �c� y. By (8), we have

�y ¼ cþ ðz� wÞ 2 cþ intC � int C; ; i:e:; y 2 �int C;
which contradicts (10). Thus (I) holds. (

THEOREM 1. Let G and H be as in Lemma 4, and let all the conditions (i)–
(iv) of Lemma 4 hold. In addition, G and H satisfy the following conditions:
(v) for any fixed x 2 D; Gðx; yÞ is C-l.s.c. in y; for any fixed y 2 D,

Hðx; yÞ is (-C)-l.s.c. in x;

(vi) there is a nonempty, convex compact subset K � D such that,
8x 2 KncoreDK;9a 2 coreDK, Gðx; aÞ þHðx; aÞ 6� Ynð�CÞ:

Then 9�x 2 K such that
Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D;

In addition, if C satisfies the condition (D), then
Gð�x; yÞ þHð�x; yÞ � Ynð�Cnf0gÞ; 8y 2 D:

First, we prove the following lemmas.

LEMMA 5. Let all the conditions in Theorem 1 hold. Then there is an
�x 2 K such that

Gðy; �xÞ �Hð�x; yÞ � Ynint C; 8y 2 K:

Proof. Define F:K �! 2K by
FðyÞ ¼ fx 2 K: Gðy; xÞ �Hðx; yÞ � Ynint Cg; 8y 2 K:

For any fixed y 2 D, since Gðy; :Þ �Hð:; yÞ is C-l.s.c., by Lemma 2, FðyÞ is
closed in K. We shall show that F is a KKM-mapping.
Suppose it is false. Then there exist fy1; . . . ; yng � K and t1; . . . ; tn > 0,Pn
i¼1 ti ¼ 1 and z ¼

Pn
i¼1 tiyi such that z 62

Sn
i¼1 FðyiÞ. Then, for each i,

Gðyi; zÞ �Hðz; yiÞ 6� Ynint C, i.e., 9ai 2 Gðyi; zÞ; bi 2 Hðz; yiÞ such that
ai � bi 2 int C. Thus,

Xn

i¼1
tiðai � biÞ 2 int C: ð11Þ

On the other hand, since G is monotone, we have

Gðyi; zÞ � �C� Gðz; yiÞ; 8i:
Since Gðx; yÞ is C-convex in y, it follows from the above that

Xn

i¼1
tiGðyi; zÞ � �C�

Xn

i¼1
tiGðz; yiÞ � �C� Gðz; zÞ � C ¼ �C: ð12Þ

Since Hðx; yÞ is C-convex in y, we get
Xn

i¼1
tiHðz; yiÞ � Hðz; zÞ þ C � Cþ C ¼ C: ð13Þ
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By (12) and (13), we have
Xn

i¼1
tiai �

Xn

i¼1
tibi 2

Xn

i¼1
tiGðyi; zÞ �

Xn

i¼1
tiHðz; yiÞ � �C: ð14Þ

By (11) and (14), we have

Xn

i¼1
tiai �

Xn

i¼1
tibi 2 ð�CÞ \ ðint CÞ ¼ ;;

a contradiction. Hence, F is a KKM-mapping. Since K is compact, by the
well-known Fan lemma, there exists �x 2

T
y2K FðyÞ, i.e.,

Gðy; �xÞ �Hð�x; yÞ � Ynint C; 8y 2 K:

(

LEMMA 6. Let D; K and C be as in Theorem 1, and let w : D �! 2Y be
given. Assume that

(i) w is C-convex;
(ii) x0 2 coreDK, wðx0Þ 6� Ynð�CÞ;
(iii) 8y 2 K, wðyÞ � Ynð�int CÞ.
Then wðyÞ � Ynð�int CÞ, 8y 2 D.

Proof. Suppose that there is a point �y 2 DnK such that wð�yÞ 6� Ynð�int CÞ.
Then there is w 2 wð�y Þ such that w 2 �int C. By condition (ii), we have
u 2 wðx0Þ such that u 2 �C. For each z 2 ðx0; �y �, z ¼ tx0 þ ð1� tÞ�y,
t 2 ½ 0; 1Þ, it follows from the C-convexity of w that

tuþ ð1� tÞw 2 twðx0Þ þ ð1� tÞwð�yÞ � wðzÞ þ C:

Therefore, there exist v 2 wðzÞ and c 2 C such that tuþ ð1� tÞw ¼ vþ c.
Thus, we have

v ¼ �cþ tuþ ð1� tÞw 2 �c� C� int C � �int C:
Hence,

wðzÞ 6� Ynð�int CÞ: ð15Þ
Since x0 2 coreDK, we have a point �z 2 ðx0; �y� \ K. By (15), we get

wð�z Þ 6� Ynð�int CÞ;
which contradicts condition (iii). (

Proof of Theorem 1. By Lemma 5, 9�x 2 K such that
Gðy; �xÞ �Hð�x; yÞ � Ynint C; 8y 2 K:

It follows from Lemma 4 that
Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 K: ð16Þ

Let wðyÞ ¼ Gð�x; yÞ þHð�x; yÞ, 8y 2 D. Then w is C-convex. By (16), we
have

wðyÞ � Ynð�int CÞ; 8y 2 K:

If �x 2 coreDK, then choose x0 ¼ �x; if �x 2 KncoreDK, by condition (vi) of
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Theorem 1, choose x0 ¼ a. We have x0 2 coreDK and wðx0Þ 6� Ynð�CÞ.
Lemma 6 yields wðyÞ � Ynð�int CÞ;8y 2 D, i.e.,

Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D:

In addition, if C satisfies the condition (D), then there is a pointed, closed
convex cone eC of Y such that Cnf0g � int eC. Then D,K, eC,G and H satisfy
all the conditions of this theorem. Applying the proof of the first part for
D,K, eC,G and H, we conclude that there is �x 2 K such that

Gð�x; yÞ þHð�x; yÞ � Ynð�int eCÞ; 8y 2 D:

Since Cnf0g � int eC, it follows
Gð�x; yÞ þHð�x; yÞ � Ynð�Cnf0gÞ; 8y 2 D: (

REMARK 3. (i) If D is a compact convex subset, then the condition (vi)
is satisfied vacuously with K ¼ D, since then KncoreDK ¼ ;. (ii) If G; H are
vector single-valued mappings, then we get Theorem 3.1 of [11]. If G, H
are scalar single-valued functions, then we get Theorem 1 of [4].

Let LðX;YÞ be the space of all continuous linear operators from X into
Y. For any l 2 LðX;YÞ, hl;xi denotes the evaluation of l at x 2 X. Let
T : D �! 2LðX;YÞ be given, and hTðxÞ; yi ¼

S
l2TðxÞhl; yi.

DEFINITION 6. Let T be as above. T is said to be monotone if,
8x; y 2 D, hTðxÞ; x� yi þ hTðyÞ; y� xi � �C.

COROLLARY. Let T : D! 2LðX;YÞ be a set-valued mapping and
h : D! Y be a single-valued mapping satisfying the following conditions:

(i) T is monotone;
(ii) for any fixed x; y 2 D, gðtÞ ¼ hTðtyþ ð1� tÞxÞ, x� yi, 0OtO1, is

(-C)-l.s.c. at t ¼ 0;
(iii) h is C-convex and continuous;
(iv) there is a nonempty, compact convex subset K of D such that,

8x 2 KncoreDK, 9a 2 coreDK,

hTðxÞ; x� ai þ hðaÞ � hðxÞ 6� Ynð�CÞ:
Then there is �x 2 K such that

hTð�xÞ; �x� yi þ hðyÞ � hð�xÞ � Ynð�int CÞ; 8y 2 D:

Proof. In Theorem 1, choose Gðx; yÞ ¼ hTðxÞ; x� yi and Hðx; yÞ ¼
hðyÞ � hðxÞ. Then Theorem 1 yields the conclusion. (

THEOREM 2. Let D, C, G and H be as in Theorem 1, and let the condi-
tions (i)–(v) of Theorem 1 hold. In addition, assume that the following condi-
tion holds:
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(vi)’ there exists a nonempty, compact convex subset B � D such that,
8x 2 DnB, 9a 2 B,

Gða; xÞ �Hðx; aÞ 6� Ynint C: ð17Þ
Then there exists �x 2 B such that

Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D:

If C satisfies the condition (D), then
Gð�x; yÞ þHð�x; yÞ � Ynð�Cnf0gÞ; 8y 2 D:

Proof. For any y 2 D, put
FðyÞ ¼ fx 2 B : Gðy; xÞ �Hðx; yÞ � Ynint Cg:

Then F has the finite intersection property. In fact, let fy1; . . . ; yng � D,
and let K ¼ coðB [ fy1; . . . ; yngÞ. Then K is a compact convex subset of D.
Applying the argument of Lemma 5, there is ~x 2 K such that

Gðy; ~xÞ �Hð~x; yÞ � Ynint C; 8y 2 K: ð18Þ
If ~x 2 KnB, then by the condition (vi)’, 9a 2 B such that

Gða; ~xÞ �Hð~x; aÞ 6� Ynint C;
a contradiction to (18). We conclude ~x 2 B. Hence, ~x 2

Tn
i¼1 FðyiÞ, i.e.,

FðyÞ has the finite intersection property. Since B is compact, we have
�x 2

T
y2D FðyÞ. Thus, �x 2 B and

Gðy; �xÞ �Hð�x; yÞ � Ynint C; 8y 2 D:

By Lemma 4, it follows that
Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D:

The second part can be proven similarly to the second part of Theorem 1.
(

REMARK 4. (i) From the proof of Theorem 2, we have the following fact:
if �x is a solution of (VEP 1) or (VEP 3) in Theorem 2, then �x 2 B. Indeed,
let �x is a solution of (VEP 1). By Lemma 4, �x also satisfies

ð��Þ Gðy; �xÞ �Hð�x; yÞ � Ynint C; 8y 2 D:

If �x 2 DnB, then by condition (vi)’ of Theorem 2, 9a 2 B such that
Gða; �xÞ �Hð�x; aÞ 6� Ynint C;

which contradicts (**). Hence, �x 2 B. For (VEP 3), the argument is similar.
(ii) If G and H are vector single-valued mappings, from the above Theo-

rem 2, we obtain Theorem 3.7 of [11].If G, H are scalar single-valued func-
tions, we get Theorem 1A of [4].We drop the maximal monotonicity of G.

4. Convexity of solution sets of VEP

THEOREM 3. Let X, Y, D and C be as in Theorem 1, and let C] 6¼ ;. Let
G; H : D�D �! 2Y be set-valued mappings satisfying the conditions (i)–(vi)
in Theorem 1. In addition, assume that G; H satisfy the following condition:
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(vii) for any fixed y 2 D, Gð:; yÞ þHð:; yÞ : D �! 2Y are natural quasi-C-
concave;

Then the solution set of (VEP 1)
E ¼ f�x 2 K : Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ;8y 2 Dg

is convex. If C satisfies the condition (D), then the solution set of (VEP 3)
E� ¼ f�x 2 K : Gð�x; yÞ þHð�x; yÞ � Ynð�Cnf0gÞ; 8y 2 Dg

is convex.

Proof. We only show the case of (VEP 1). The other one can be proven
similarly. By Theorem 1, E 6¼ ;. 8f 2 C], let TðfÞ ¼ f�x 2 K :
f½Gð�x; yÞ þHð�x; yÞ� � 0, 8y 2 Dg, then E ¼

T
f2C] TðfÞ, where f½Gð�x; yÞþ

Hð�x; yÞ�P0 means that 8z 2 Gð�x; yÞ, w 2 Hð�x; yÞ, fðzþ wÞP0.
Indeed, let �x 2 E. Then Gð�x; yÞþ Hð�x; yÞ � Ynð�int CÞ; 8y 2 D. If

f 2 C], for any z 2 Gð�x; yÞ, w 2 Hð�x; yÞ, zþ w j2�int C and fðzþ wÞP0.
Hence, 8f 62 C] �x 62 TðfÞ. Then, E �

T
f2C] TðfÞ.

On the other hand, if �x 2
T

f2C] TðfÞ, then 8f 2 C] such that �x 2 TðfÞ,
that is,

fðGð�x; yÞ þHð�x; yÞÞP0; 8y 2 D: ð19Þ
We claim that �x 2 E, that is,

Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 D:

Suppose to the contrary that there is a �y 2 D such that
Gð�x; �yÞ þHð�x; �yÞ 6� Ynð�int CÞ:

Then there are z 2 Gð�x; �yÞ, w 2 Hð�x; �yÞ such that zþ w 2 �int C. Since
f 2 C], it follows fðzþ wÞ < 0, which contradicts (19). Hence, �x 2 E.
Next, we show that 8f 2 C], TðfÞ is a nonempty,convex subset of K.
Let f 2 C] be given. Let x1, x2 2 TðfÞ, and �x ¼ tx1 þ ð1� tÞx2, 0OtO1.

Then we have
fðGðxi; yÞ þHðxi; yÞÞP0; 8y 2 D; i ¼ 1; 2: ð20Þ

For any fixed y 2 D, by condition (vii), 8z 2 Gð�x; yÞ þHð�x; yÞ, there are
zi 2 Gðxi; yÞ þHðxi; yÞ, i ¼ 1; 2, l 2 ½0; 1� such that

z 2 lz1 þ ð1� lÞz2 þ C:

Then, there is some �c 2 C such that
z ¼ lz1 þ ð1� lÞz2 þ �c: ð21Þ

By (20) and (21), we have fðzÞP0. Since z is arbitrary, we get �x 2 TðfÞ, i.e.,
TðfÞ is convex. Since E ¼

T
f2] TðfÞ, E is convex. (

Using a similar proof, we have the following result.

THEOREM 4. Let X, Y, D and C be the same as in Theorem 3. Let G,
H : D�D �! 2Y satisfy all the conditions in Theorem 2. In addition, assume
that the following condition holds:

(vi) for any fixed y 2 D, Gð:; yÞþ Hð:; yÞ : D �! 2Y is natural quasi-C-con-
cave.
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Then the solution set of (VEP 1)
E ¼ f�x 2 B : Gð�x; yÞ þHð�x; yÞ � Ynð�int CÞ; 8y 2 Dg

is convex. If C satisfies condition (D), then the solution set of (VEP 3)
E� ¼ f�x 2 B : Gð�x; yÞ þHð�x; yÞ � Ynð�Cnf0gÞ; 8y 2 Dg

is convex.
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